Linear Algebra II 24/03/2017, Friday, 9:00 – 11:00

1 (10 + 10 = 20 pts)

Inner product spaces

Consider the inner product space C[-1, 1] with inner product

$$(f,g) := \int_{-1}^{1} f(t)g(t)dt.$$

Let S be the subspace of all linear functions of the form g(t) = at + b with $a, b \in \mathbb{R}$.

- (a) Determine an orthonormal basis of \mathcal{S} .
- (b) Compute the best least squares approximation of the function $f(t) = e^t$ by a function from the subspace S.

2 (4+5+6+10=25 pts)

Diagonalization

We say that two $n \times n$ matrices are simultaneously diagonalizable if there exists a nonsingular $n \times n$ matrix S such that both $S^{-1}AS$ and $S^{-1}BS$ are diagonal (not necessarily identical).

- (a) Let I denote the $n \times n$ identity matrix and let A be any diagonalizable $n \times n$ matrix. Show that I and A are simultaneously diagonalizable.
- (b) Show that if A and B are simultaneously diagonalizable then AB = BA.
- (c) Let D be a diagonal $n \times n$ matrix with n distinct entries on the diagonal. Find all $n \times n$ matrices that commute with D.
- (d) Show that if AB = BA and A has n distinct eigenvalues, then A and B are simultaneously diagonalizable.

Let A be a $m \times m$ matrix, B a $n \times n$ matrix and C a $m \times n$ matrix. We consider the Sylvester equation

$$AX - XB = C$$

in the unknown $m \times n$ matrix X. Let x_1, x_2, \ldots, x_n be the columns of X and c_1, c_2, \ldots, c_n be the columns of C.

- (a) First assume that B is a diagonal matrix with diagonal elements b_1, b_2, \ldots, b_n . Show that X satisfies the Sylvester equation if and only if $Ax_i b_ix_i = c_i$ for $i = 1, 2, \ldots, n$.
- (b) Show that the Sylvester equation has a solution X if, for i = 1, 2, ..., n, b_i is NOT an eigenvalue of A.
- (c) Let U be a unitary matrix. Show that the Sylvester equation has a solution X if and only if the equation $AY YUBU^T = CU^T$ has a solution Y.
- (d) Now assume B is any Hermitian matrix, not necessarily diagonal. Show that the Sylvester equation has a solution X if A and B have no common eigenvalues.

$$4 \quad (20 + 5 = 25 \text{ pts})$$

Singular value decomposition

Consider the matrix

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

- (a) Find a singular value decomposition of A.
- (b) Find the best rank 1 approximation for A.

10 pts free