Linear Algebra II

24/03/2017, Friday, 9:00-11:00

$1(10+10=20 \mathrm{pts})$
Inner product spaces

Consider the inner product space $C[-1,1]$ with inner product

$$
(f, g):=\int_{-1}^{1} f(t) g(t) d t
$$

Let \mathcal{S} be the subspace of all linear functions of the form $g(t)=a t+b$ with $a, b \in \mathbb{R}$.
(a) Determine an orthonormal basis of \mathcal{S}.
(b) Compute the best least squares approximation of the function $f(t)=e^{t}$ by a function from the subspace \mathcal{S}.
$2(4+5+6+10=25 \mathrm{pts})$

Diagonalization

We say that two $n \times n$ matrices are simultaneously diagonalizable if there exists a nonsingular $n \times n$ matrix S such that both $S^{-1} A S$ and $S^{-1} B S$ are diagonal (not necessarily identical).
(a) Let I denote the $n \times n$ identity matrix and let A be any diagonalizable $n \times n$ matrix. Show that I and A are simultaneously diagonalizable.
(b) Show that if A and B are simultaneously diagonalizable then $A B=B A$.
(c) Let D be a diagonal $n \times n$ matrix with n distinct entries on the diagonal. Find all $n \times n$ matrices that commute with D.
(d) Show that if $A B=B A$ and A has n distinct eigenvalues, then A and B are simultaneously diagonalizable.

Let A be a $m \times m$ matrix, B a $n \times n$ matrix and C a $m \times n$ matrix. We consider the Sylvester equation

$$
A X-X B=C
$$

in the unknown $m \times n$ matrix X. Let $x_{1}, x_{2} \ldots, x_{n}$ be the columns of X and $c_{1}, c_{2} \ldots, c_{n}$ be the columns of C.
(a) First assume that B is a diagonal matrix with diagonal elements $b_{1}, b_{2}, \ldots, b_{n}$. Show that X satisfies the Sylvester equation if and only if $A x_{i}-b_{i} x_{i}=c_{i}$ for $i=1,2 \ldots, n$.
(b) Show that the Sylvester equation has a solution X if, for $i=1,2, \ldots, n, b_{i}$ is NOT an eigenvalue of A.
(c) Let U be a unitary matrix. Show that the Sylvester equation has a solution X if and only if the equation $A Y-Y U B U^{T}=C U^{T}$ has a solution Y.
(d) Now assume B is any Hermitian matrix, not necessarily diagonal. Show that the Sylvester equation has a solution X if A and B have no common eigenvalues.
$4 \quad(20+5=25 \mathrm{pts})$
Singular value decomposition

Consider the matrix

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right]
$$

(a) Find a singular value decomposition of A.
(b) Find the best rank 1 approximation for A.

10 pts free

